- የзвиρይчис щиնቸтвοщεቿ
- Уያагի βащεщιχο
- Е ш ቹпոц
- О т
- Зугиካևւу шθсл ωሽեዉևፊаск акаկусвոч
- Ղυ руво θклιгዳրы
Pernyataan 1 Perhatikan pernyataan untuk setiap bilangan asli n yang dapat ditulis juga sebagai untuk setiap bilangan asli n. Karena akan dibuktikan pernyataan untuk setiap bilangan asli n, yaitu n ≥ 1, maka langkah pertamanya adalah buktikan P1 benar. LANGKAH 1 Buktikan P1 benar. Perhatikan pernyataan maka Ruas kiri = Ruas kanan = Karena ruas kiri = ruas kanan, maka P1 benar. LANGKAH 2 Buktikan untuk sembarang bilangan asli k, jika Pk bernilai benar mengakibatkan Pk+1 bernilai benar. Perhatikan pernyataan Asumsikan bernilai benar Perhatikan Dari ruas kiri Pk+1 Sehingga didapatkan ruas kiri = ruas kanan. Maka, Pk+1 bernilai benar. Karena 1. P1 benar. 2. Untuk sembarang bilangan asli k, jika Pk bernilai benar mengakibatkan Pk+1 bernilai benar. Maka, Pn benar untuk setiap bilangan asli n, menurut prinsip induksi matematika. Pernyataan 2 Perhatikan pernyataan untuk setiap bilangan asli n yang dapat ditulis juga sebagai untuk setiap bilangan asli n. Karena akan dibuktikan pernyataan untuk setiap bilangan asli n, yaitu n ≥ 1, maka langkah pertamanya adalah buktikan P1 benar. LANGKAH 1 Buktikan P1 benar. Perhatikan pernyataan Maka Ruas kiri = Ruas kanan = Karena ruas kiri = ruas kanan, maka P1 benar. LANGKAH 2 Buktikan untuk sembarang bilangan asli k, jika Pk bernilai benar mengakibatkan Pk+1 bernilai benar. Perhatikan pernyataan Asumsikan bernilai benar. Perhatikan Dari ruas kiri Pk+1 Sehingga didapatkan ruas kiri = ruas kanan. Maka, Pk+1 bernilai benar. Karena 1. P1 benar. 2. Untuk sembarang bilangan asli k, jika Pk bernilai benar mengakibatkan Pk+1 bernilai benar. Maka, Pn benar untuk setiap bilangan asli n, menurut prinsip induksi matematika. Maka, menggunakan induksi matematika, pernyataan yang bernilai benar ditunjukkan oleh nomor 1 dan 2. Jadi, jawaban yang tepat adalah C.
Perhatikanpernyataan berikut! untuk setiap bilangan asli . Dengan melakukan substitusi , didapat pernyataan sebagai berikut. Ruas kiri: 3. Ruas kanan: Karena ruas kiri tidak sama dengan ruas kanan , maka bernilai SALAH. Karena bernilai SALAH, maka tidak terbukti BENAR untuk setiap bilangan asli , menurut prinsip induksi matematika.Pernyataan 1 Diberikan pernyataan sebagai berikut untuk setiap bilangan asli . Karena akan dibuktikan pernyataan untuk setiap bilangan asli , yaitu , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan maka Ruas kiri = Ruas kanan = Karena ruas kiri = ruas kanan, maka benar. LANGKAH 2 Buktikan untuk sembarang bilangan asli k, jika bernilai benar mengakibatkan bernilai benar. Perhatikan pernyataan Asumsikan bernilai benar. Perhatikan Dari ruas kiri , didapatkan hubungan sebagai berikut. Dengan demikian, didapatkan ruas kiri sama dengan ruas kanan. Jadi, bernilai benar. Karena 1. benar. 2. Untuk sembarang bilangan asli k, jika bernilai benar mengakibatkan bernilai benar. Oleh karena itu, benar untuk setiap bilangan asli , menurut prinsip induksi matematika. Pernyataan 2 Dapat diperhatikan bahwa pernyataan untuk setiap bilangan asli . Karena akan dibuktikan pernyataan untuk setiap bilangan asli , yaitu , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan maka Ruas kiri = Ruas kanan = Karena ruas kiri tidak sama dengan ruas kanan, maka salah. Karena salah, maka tidak terbukti benar untuk setiap bilangan asli , menurut prinsip induksi matematika. Dengan demikian, menggunakan induksi matematika, pernyataan yang bernilai benar ditunjukkan oleh nomor 1 saja. Jadi, jawaban yang tepat adalah A.